Maize ears from CIMMYT’s maize germplasm bank. Image courtesy of CIMMYT. See Montesinos-López et al. (2018), pages 3813–3828 and 3829–3840 where Deep Learning Neural Network methods for genome-enabled predictions of maize and wheat plant breeding data were applied.

Publications

GSA connects you to the field through a range of scholarly and community publications: our peer-reviewed journals offer two distinct platforms for communicating high-quality original research; our blog brings perspective to your research and career; and our newsletters keep you up to date with the latest opportunities and news from your community.

Microscope image from a cre-driver mouse strain developed with the MiniPromoter Ple155 (PCP2), which restricts expression to bipolar cells in the retina. This Ple155 (PCP2)-icre/ERT2 male mouse was fed a tamoxifen diet to induce icre expression, which removed a loxP flanked stop cassette, allowing expression of tdTomato (red). Bipolar cells were identified by co-staining with antibody against PCP2 (green), and merge (yellow). This is one of 27 cre-driver strains for the brain and eye that Korecki et al. have produced using knock-ins at the mouse genome docking site 5′ of Hprt and an improved cre tamoxifen inducible-first, constitutive ready allele (icre/f3/ERT2/f3). See Korecki et al., pp 1155–1177.

Journal: GENETICS

Rediscover GENETICS.

GENETICS publishes high-quality genetics and genomics research that expands scientific boundaries—we’ve been building the field since 1916. With its broad readership, rich history, and responsive editors, GENETICS brings the latest in publishing innovations to the communities it serves. We invite you to submit your research and discover the fast turnaround times and helpful review process for yourself.

Journal: G3: Genes|Genomes|Genetics

Good data, shared widely.

Get your useful data out into the world by publishing in G3: Genes|Genomes|Genetics. G3 publishes high quality foundational research, particularly studies that generate useful genetic information, such as mutant screens, single gene studies, genome maps, genome sequence data, GWAS and QTL studies, software, data resources, and new methods. The Editorial Board of G3 believes that rapid dissemination of such data lays the foundation for many important insights.

Image: Christopher H. Eliot

Female bronzed cowbird (Molothrus aeneus) in Hidalgo county, Texas. See Lynch et al., pp 1075–1084.

A young Antarctic fur seal (Arctocephalus gazella) playing in the waters of Bird Island, South Georgia during the 2016 breeding season. See Humble et al. G3 8: 2709–2722.

Why publish with GSA?

We treat authors as colleagues, not adversaries. Your time is important—and so is your research. Peer editors oversee the review process and give you clear guidance on how to address any reviewer comments; our helpful editorial staff keep the process moving and on time. We make it easy to submit: no formatting requirements on initial submission. Our dedicated editors work hard to keep time to first decision at around a month. And because we’re agile and community-driven, we’ve long been at the forefront of publishing innovations.

The review experience has been the single most useful and pleasant of my career. The reviews were constructive and fair, the editor provided exceptionally clear guidance, and turn-around on the revision was lightning fast.

Catherine Linnen, GENETICS author
Blog: Genes to Genomes

Sharing community voices.

Genes to Genomes, the GSA blog, features news from the GSA community, highlights from the GSA journals, and posts from staff and guest authors about careers, professional development, science policy, publishing, education, outreach, equity and inclusion, and the intersections of science, art, and culture. Propose a guest post yourself and start a conversation!

Read the latest.

Community Voices

New Faculty Profile: Katherine Thompson-Peer

New Faculty Profiles allow GSA members who are establishing their first labs to introduce themselves to our wider community. If you’d like to submit your profile, please complete this form. Katherine Thompson-Peer Assistant Professor, Developmental & Cell Biology University of California, Irvine Lab website   Briefly describe the ongoing and expected research projects. My lab is interested in […]

Read more »

by Editorial Staff

The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination [Development and Growth]

A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic...

Read more »

by Martin, A. C.

Genome-Wide Association Study in Two Cohorts from a Multi-generational Mouse Advanced Intercross Line Highlights the Difficulty of Replication Due to Study-Specific Heterogeneity

There has been extensive discussion of the "Replication Crisis" in many fields, including genome-wide association studies (GWAS). We explored replication in a mouse model using an advanced intercross line (AIL), which is a multigenerational intercross between two inbred strains. We re-genotyped a previously published cohort of LG/J x SM/J AIL mice (F34; n = 428) using a denser marker set and genotyped a new cohort of AIL mice (F39-43; n = 600) for the first...

Read more »

by Zhou, X., St. Pierre, C....

Newsletter Subscriptions

Footer